Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[(μ_{4}-adamantane-1,3-dicarboxyl-ato- $\left.\kappa^{5} O^{1}: O^{1^{\prime}}: O^{3}, O^{3^{\prime}}: O^{3^{\prime}}\right)\left(\mu_{3}\right.$-adaman-tane-1,3-dicarboxylato- $\kappa^{5} O^{1}, O^{1^{\prime}}$:$\left.O^{3}, O^{3^{\prime}}: O^{3^{\prime}}\right)$ dimagnesium]: a layered coordination polymer

Anna M. Plonka, ${ }^{\text {a }}$ Debasis Banerjee ${ }^{\text {b }}$ * and John B. Parise ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
Correspondence e-mail: debasis.banerjee@stonybrook.edu

Received 2 September 2011
Accepted 16 September 2011
Online 6 October 2011

The title compound, $\left[\mathrm{Mg}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\right)_{2}\right]_{n}$, is the first example of an s-block metal adamantanedicarboxylate coordination polymer. The asymmetric unit comprises two crystallographically unique $\mathrm{Mg}^{\mathrm{II}}$ centers and two adamantane-1,3-dicarboxylate ligands. The compound is constructed from a combination of chains of corner-sharing magnesium-centered polyhedra, parallel to the a axis, connected by organic linkers to form a layered polymer. The two $\mathrm{Mg}^{\mathrm{II}}$ centers are present in distorted tetrahedral and octahedral coordination environments derived from carboxylate O atoms. Tetrahedrally coordinated $\mathrm{Mg}^{\text {II }}$ centers have been reported in organometallic compounds, but this is the first time that such coordination has been observed in a magnesium-based coordination polymer. The bond valance sums of the two $\mathrm{Mg}^{\text {II }}$ centers are 2.05 and 2.11 valence units, matching well with the expected value of 2 .

Comment

Coordination polymers (CPs) or metal-organic frameworks (MOFs) (Cheetham et al., 2006) are a new class of material composed of extended arrays of metal centers, connected by organic linkers to form frameworks of various dimensionalities, tailored for specific uses such as gas storage (Murray et al., 2009), separation (Li et al., 2009), catalysis (Ma et al., 2009) and luminescence (Allendorf et al., 2009). A wide range of metal centers is used to construct MOFs or CPs. First-row transition metals are popular choices because of their well known bonding interactions with the functional groups of organic linkers. The application of alkali and alkaline earth metals to form MOFs or CPs is limited, however. The use of s-block metal centers to construct frameworks offers several advantages. Porous frameworks based on early s-block metals
can provide gravimetric advantages for gas-storage applications due to the low atomic weight metal centers (Dinca \& Long, 2005; Abrahams et al., 2010). In addition, nontoxic frameworks based on s-block metals ($\mathrm{Na}, \mathrm{K}, \mathrm{Mg}$ and Ca) have potential uses in biological applications (Imaz et al., 2011).

Apart from metal centers, the choice of organic linkers is critical for varying the coordination behavior of metal ions and determining the overall characteristics of the framework. For example, adamantanedicarboxylate linkers are used to form various framework topologies with first-row transition metals, lanthanides and actinides (Nazarenko et al., 2010; Nielsen et al., 2008; Millange et al., 2004; Ok \& O’Hare, 2008; Xu et al., 2006).

Our group is currently investigating the structure type and functionalities of different frameworks formed using s-block metal centers (Li, Mg and Ca) for potential use as gas-storage media (Banerjee et al., 2010, 2011). In this work, we report the first example of a magnesium-adamantane-1,3-dicarboxylate $[\mathrm{Mg}(1,3-\mathrm{ADA})]$ layered polymer, namely poly[(μ_{4}-adaman-tane-1,3-dicarboxylato)magnesium], (I), prepared under solvothermal conditions. Compound (I) crystallizes in the triclinic space group $P \overline{1}$ with an asymmetric unit comprising two $\mathrm{Mg}^{\text {II }}$ ions and two complete dianionic 1,3-ADA ${ }^{2-}$ ligands (Fig. 1).

Figure 1
A view of the local environment of the $\mathrm{Mg}^{\mathrm{II}}$ cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y$, $-z$; (iii) $-x+1,-y,-z+1$; (iv) $x+1, y, z$.]

Figure 2
A view of the structure of (I), along the [100] direction, parallel to the layers. H atoms have been omitted for clarity.

There are two types of crystallographically independent Mg site, viz. Mg 1 with a tetrahedral MgO_{4} environment and Mg 2 with a distorted octahedral MgO_{6} environment.

Atom Mg 1 is coordinated to four bridging bidentate 1,3-ADA^{2-} ligands, with $\mathrm{Mg}-\mathrm{O}$ bond lengths and internal $\mathrm{O}-$ $\mathrm{Mg}-\mathrm{O}$ angles of 1.919 (2)-1.9470 (18) \AA and 104.53 (8)$112.92(8)^{\circ}$, respectively (Table 1). Tetrahedral coordination of magnesium is well established in magnesium-based organometallic compounds (Cambridge Structural Database, Version 5.32, update of November 2010; Allen 2002), but to the best of our knowledge this is the first time that such coordination has been seen in a magnesium-based polymer. Atom Mg 2 is also coordinated by four $1,3-\mathrm{ADA}^{2-}$ ligands, where two of these act as bidentate chelating ligands donating four O atoms [O 3 , $\mathrm{O} 4, \mathrm{O}^{\mathrm{iv}}$ and O^{iv}; symmetry code: (iv) $x+1, y, z$] which occupy two axial and two equatorial sites. The other equatorial O atoms $\left[\mathrm{O}^{\mathrm{ii}}\right.$ and $\mathrm{O}{ }^{\text {iiii }}$; symmetry codes: (ii) $-x+1,-y,-z$; (iii) $-x+1,-y,-z+1]$ are donated by two different bridging bidentate $1,3-$ ADA $^{2-}$ ligands. The coordination octahedron is highly distorted, with two narrow $\mathrm{O}-\mathrm{Mg}-\mathrm{O}$ angles [$\mathrm{O} 3-$ $\mathrm{Mg} 2-\mathrm{O} 4=60.72(7)^{\circ}$ and $\left.\mathrm{O}^{\mathrm{iv}}-\mathrm{Mg} 2-\mathrm{O}^{\mathrm{iv}}=60.59(7)^{\circ}\right]$ from chelating carboxylate groups (Table 1). The $\mathrm{Mg} 2-\mathrm{O}$ bond lengths lie in the range 1.969 (2)-2.1739 (17) \AA and the distances involving bidentate chelating O atoms are significantly longer than those involving bidentate bridging O atoms, viz. 2.1147 (19) -2.1739 (17) ($\mathrm{O} 3, \mathrm{O} 4, \mathrm{O}^{\text {iv }}$ and O^{iv}) versus $1.969(2)-1.971(2) \AA\left(\mathrm{O} 2^{\mathrm{iii}}\right.$ and $\left.\mathrm{O}^{\mathrm{iii}}\right)$ (see Table 1 for symmetry codes).

Atoms O 4 and O 5 bridge adjacent Mg 1 and Mg 2 centers, leading to the formation of $\cdots \mathrm{Mg} 1 \cdots \mathrm{Mg} 2 \cdots \mathrm{Mg} 1 \cdots$ chains running parallel to the a axis (Fig. 2); the $\mathrm{Mg} 1 \cdots \mathrm{Mg} 2$ and $\mathrm{Mg} 2 \cdots \mathrm{Mg} 1^{\mathrm{iv}}$ distances are 3.5419 (11) and 3.5463 (11) \AA,

Figure 3
A view of a single layer of the structure of (I), highlighting the chains of alternating MgO_{4} and MgO_{6} coordination polyhedra. H atoms have been omitted for clarity.
respectively. The $\mathrm{Mg} 1 \cdots \mathrm{Mg} 2$ chains are crosslinked by 1,3-ADA^{2-} ligands. The carboxylate groups of the $1,3-\mathrm{ADA}^{2-}$ linkers display two different coordination behaviors, viz. bidentate chelating ($\mathrm{O} 3 / \mathrm{O} 4$ and $\mathrm{O} 5 / \mathrm{O} 6$) and bidentate bridging ($\mathrm{O} 1 / \mathrm{O} 2$ and $\mathrm{O} 7 / \mathrm{O} 8$) (Fig. 1), with atoms O 4 and O 5 shared between atoms Mg 1 and Mg 2 . Hence, each of the organic linkers connects four metal ions to produce twodimensional layers in the $a c$ plane (Fig. 3).

Experimental

Compound (I) was synthesized by dissolving $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(99 \%$, Sigma-Aldrich; $0.122 \mathrm{~g}, 0.47 \mathrm{mmol}$) and adamantane-1,3-dicarboxylic acid (95%, TCI-America; $0.106 \mathrm{~g}, 0.47 \mathrm{mmol}$) in a mixture of ethanol (95%, Fisher; 4.0 g) and N, N-dimethylformamide (DMF, 99\%, Sigma-Aldrich; 4.0 g), and stirring the mixture for 1 h (molar ratio of metal salt-ligand-DMF-ethanol $=1: 1: 116: 185)$. The resulting solution was placed in a Teflon-lined 23 ml Parr stainless steel autoclave and heated for 5 d at 453 K . The product was obtained as needleshaped crystals (yield $0.130 \mathrm{~g}, 55 \%$ based on Mg) which were washed with ethanol.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\right)\right]$
$M_{r}=493.00$
Triclinic, $P \overline{1}$
$a=6.9034(2) \AA \AA$
$b=11.3549(4) \AA$
$c=15.3196(6) \AA$
$\alpha=70.713(4)^{\circ}$
$\beta=83.131(3)^{\circ}$

Data collection

Oxford Xcalibur Atlas Gemini diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.979, T_{\text {max }}=1.000$

$\gamma=89.141(3)^{\circ}$
$V=1124.95(7) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.3 \times 0.1 \times 0.05 \mathrm{~mm}$

28700 measured reflections
4605 independent reflections 3157 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.061$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	1.922 (2)	$\mathrm{Mg} 2-\mathrm{O} 3$	2.116 (2)
$\mathrm{Mg} 1-\mathrm{O} 4$	1.9443 (18)	$\mathrm{Mg} 2-\mathrm{O} 4$	2.1713 (17)
$\mathrm{Mg} 1-\mathrm{O} 5$	1.9470 (18)	$\mathrm{Mg} 2-\mathrm{O} 5^{\text {iv }}$	2.1739 (17)
$\mathrm{Mg} 1-\mathrm{O} 7^{\text {ii }}$	1.919 (2)	$\mathrm{Mg} 2-\mathrm{O}^{\text {iv }}$	2.1147 (19)
$\mathrm{Mg} 2-\mathrm{O} 2{ }^{\text {iii }}$	1.971 (2)	$\mathrm{Mg} 2-\mathrm{O} 8^{\text {ii }}$	1.969 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 4$	111.03 (9)	$\mathrm{O} 3-\mathrm{Mg} 2-\mathrm{O} 4$	60.72 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 5$	104.53 (8)	$\mathrm{O} 3-\mathrm{Mg} 2-\mathrm{O} 5^{\text {iv }}$	108.79 (7)
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 5$	112.92 (8)	$\mathrm{O} 5^{\text {iv }}-\mathrm{Mg} 2-\mathrm{Of}^{\text {iv }}$	60.59 (7)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	111.52 (10)	$\mathrm{O} 6^{\text {iv }}-\mathrm{Mg} 2-\mathrm{O} 3$	92.72 (8)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Mg} 1-\mathrm{O} 4$	104.95 (8)	$\mathrm{O} 6^{\text {iv }}-\mathrm{Mg} 2-\mathrm{O} 4$	108.27 (7)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Mg} 1-\mathrm{O} 5$	112.07 (9)	$\mathrm{O} \mathrm{id}^{\mathrm{ii}}-\mathrm{Mg} 2-\mathrm{O} 2{ }^{\text {iii }}$	96.80 (11)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Mg} 2-\mathrm{O} 3$	89.61 (9)	$\mathrm{O} 8^{\text {ii }}-\mathrm{Mg} 2-\mathrm{O} 4$	95.76 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Mg} 2-\mathrm{O} 4$	93.73 (8)	$\mathrm{O} 8^{\text {ii }}-\mathrm{Mg} 2-\mathrm{O}^{\text {iv }}$	93.49 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Mg} 2-\mathrm{O} 5^{\text {iv }}$	96.04 (8)	$\mathrm{O} 8^{\text {ii }}-\mathrm{Mg} 2-\mathrm{O}^{\text {iv }}$	90.71 (9)

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z$; (iii) $-x+1,-y,-z+1$; (iv)
$x+1, y, z$.

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$	307 parameters
$w R\left(F^{2}\right)=0.154$	H -atom parameters constrained
$S=1.02$	$\Delta \rho_{\max }=0.46 \mathrm{e} \AA \AA^{-3}$
4605 reflections	$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$

All C-bound H atoms were placed in calculated positions and treated using a riding model, with $\mathrm{C}-\mathrm{H}=0.97$ (methylene) or $0.98 \AA$ (methine), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Burnett \& Johnson, 1996) and CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.

The synthesis and characterization work was supported through the National Science Foundation (grant No. DMR-
0800415). The crystal structure was determined using the Stony Brook University single-crystal diffractometer, obtained through the support of the National Science Foundation (grant No. CHE-0840483).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3110). Services for accessing these data are described at the back of the journal.

References

Abrahams, B. F., Grannas, M. J., Hudson, T. A. \& Robson, R. (2010). Angew. Chem. Int. Ed. 49, 1087-1089.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allendorf, M. D., Bauer, C. A., Bhakta, R. K. \& Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.
Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P. M., Borkowski, L. A., Teat, S. J. \& Parise, J. B. (2011). Cryst. Growth Des. 11, 2572-2579.
Banerjee, D., Kim, S. J., Li, W., Wu, H. H., Li, J., Borkowski, L. A., Philips, B. L. \& Parise, J. B. (2010). Cryst. Growth Des. 10, 2801-2805.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cheetham, A. K., Rao, C. N. R. \& Feller, R. K. (2006). Chem. Commun. pp. 4780-4795.
Dinca, M. \& Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376-9377.
Imaz, I., Rubio-Martinez, M., An, J., Sole-Font, I., Rosi, N. L. \& Maspoch, D. (2011). Chem. Commun. 47, 7287-7302.

Li, J. R., Kuppler, R. J. \& Zhou, H. C. (2009). Chem. Soc. Rev. 38, 1477-1504.
Ma, L. Q., Abney, C. \& Lin, W. B. (2009). Chem. Soc. Rev. 38, 1248-1256.
Millange, F., Serre, C., Marrot, J., Gardant, N., Pelle, F. \& Ferey, G. (2004). J. Mater. Chem. 14, 642-645.

Murray, L. J., Dinca, M. \& Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.
Nazarenko, O. M., Rusanova, J. A., Krautscheid, H. \& Domasevitch, K. V. (2010). Acta Cryst. C66, m276-m279.

Nielsen, R. B., Kongshaug, K. O. \& Fjellvag, H. (2008). J. Mater. Chem. 18, 1002-1007.
Ok, K. M. \& O'Hare, D. (2008). Dalton Trans. pp. 5560-5562.
Oxford Diffraction (2010). CrysAlis PRO. Version 4. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Palmer, D. (2009). CrystalMaker for Windows. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, D. J., Pan, L., Emge, T. J., Huang, X.-Y. \& Li, J. (2006). Acta Cryst. C62, m150-m152.

